29 research outputs found

    Non-minimally coupled scalar field cosmology on the phase plane

    Full text link
    In this publication we investigate dynamics of a flat FRW cosmological model with a non-minimally coupled scalar field with the coupling term ξRψ2\xi R \psi^{2} in the scalar field action. The quadratic potential function V(ψ)ψ2V(\psi)\propto \psi^{2} is assumed. All the evolutional paths are visualized and classified in the phase plane, at which the parameter of non-minimal coupling ξ\xi plays the role of a control parameter. The fragility of global dynamics with respect to changes of the coupling constant is studied in details. We find that the future big rip singularity appearing in the phantom scalar field cosmological models can be avoided due to non-minimal coupling constant effects. We have shown the existence of a finite scale factor singular point (future or past) where the Hubble function as well as its first cosmological time derivative diverges.Comment: revtex4, 20 pages, 12 figs; (v2) title changed, analysis of critical points at infinity added, accepted to JCA

    Scalar field cosmology in the energy phase-space -- unified description of dynamics

    Full text link
    In this letter we apply dynamical system methods to study all evolutional paths admissible for all initial conditions of the FRW cosmological model with a non-minimally coupled to gravity scalar field and a barotropic fluid. We choose "energy variables" as phase variables. We reduce dynamics to a 3-dimensional dynamical system for an arbitrary potential of the scalar field in the phase space variables. After postulating the potential parameter Γ\Gamma as a function of λ\lambda (defined as V/V-V'/V) we reduce whole dynamics to a 3-dimensional dynamical system and study evolutional paths leading to current accelerating expansion. If we restrict the form of the potential then we will obtain a 2-dimensional dynamical system. We use the dynamical system approach to find a new generic quintessence scenario of approaching to the de Sitter attractor which appears only for the case of non-vanishing coupling constant.Comment: revtex4, 16 pages, 3 figs; (v2) refs. added, published versio

    Exploring the Expanding Universe and Dark Energy using the Statefinder Diagnostic

    Get PDF
    The coming few years are likely to witness a dramatic increase in high quality Sn data as current surveys add more high redshift supernovae to their inventory and as newer and deeper supernova experiments become operational. Given the current variety in dark energy models and the expected improvement in observational data, an accurate and versatile diagnostic of dark energy is the need of the hour. This paper examines the Statefinder diagnostic in the light of the proposed SNAP satellite which is expected to observe about 2000 supernovae per year. We show that the Statefinder is versatile enough to differentiate between dark energy models as varied as the cosmological constant on the one hand, and quintessence, the Chaplygin gas and braneworld models, on the other. Using SNAP data, the Statefinder can distinguish a cosmological constant (w=1w=-1) from quintessence models with w0.9w \geq -0.9 and Chaplygin gas models with κ15\kappa \leq 15 at the 3σ3\sigma level if the value of \om is known exactly. The Statefinder gives reasonable results even when the value of \om is known to only 20\sim 20% accuracy. In this case, marginalizing over \om and assuming a fiducial LCDM model allows us to rule out quintessence with w0.85w \geq -0.85 and the Chaplygin gas with κ7\kappa \leq 7 (both at 3σ3\sigma). These constraints can be made even tighter if we use the Statefinders in conjunction with the deceleration parameter. The Statefinder is very sensitive to the total pressure exerted by all forms of matter and radiation in the universe. It can therefore differentiate between dark energy models at moderately high redshifts of z \lleq 10.Comment: 21 pages, 17 figures. Minor typos corrected to agree with version published in MNRAS. Results unchange

    Confusing the extragalactic neutrino flux limit with a neutrino propagation limit

    Full text link
    We study the possible suppression of the extragalactic neutrino flux due to a nonstandard interaction during its propagation. In particular, we study neutrino interaction with an ultra-light scalar field dark matter. It is shown that the extragalactic neutrino flux may be suppressed by such an interaction, leading to a new mechanism to reduce the ultra-high energy neutrino flux. We study both the cases of non-self-conjugate as well as self-conjugate dark matter. In the first case, the suppression is independent of the neutrino and dark matter masses. We conclude that care must be taken when explaining limits on the neutrino flux through source acceleration mechanisms only, since there could be other mechanisms for the reduction of the neutrino flux.Comment: 15 pages, 4 figures. Important changes implemented. Abstract modified. Conclusions remain. To be published in JCA

    Modelling non-dust fluids in cosmology

    Full text link
    Currently, most of the numerical simulations of structure formation use Newtonian gravity. When modelling pressureless dark matter, or `dust', this approach gives the correct results for scales much smaller than the cosmological horizon, but for scenarios in which the fluid has pressure this is no longer the case. In this article, we present the correspondence of perturbations in Newtonian and cosmological perturbation theory, showing exact mathematical equivalence for pressureless matter, and giving the relativistic corrections for matter with pressure. As an example, we study the case of scalar field dark matter which features non-zero pressure perturbations. We discuss some problems which may arise when evolving the perturbations in this model with Newtonian numerical simulations and with CMB Boltzmann codes.Comment: 5 pages; v2: typos corrected and refs added, submitted version; v3: version to appear in JCA

    Dynamical evolution of phantom scalar perturbation in the background of Schwarzschild black String spacetime

    Full text link
    Using Leaver's continue fraction and time domain method, we study the wave dynamics of phantom scalar perturbation in a Schwarzschild black string spacetime. We find that the quasinormal modes contain the imprint from the wavenumber kk of the fifth dimension. The late-time behaviors are dominated by the difference between the wavenumber kk and the mass μ\mu of the phantom scalar perturbation. For k<μk<\mu, the phantom scalar perturbation in the late-time evolution grows with an exponential rate as in the four-dimensional Schwarzschild black hole spacetime. While, for k=μk=\mu, the late-time behavior has the same form as that of the massless scalar field perturbation in the background of a black hole. Furthermore, for k>μk>\mu, the late-time evolution of phantom scalar perturbation is dominated by a decaying tail with an oscillation which is consistent with that of the usual massive scalar field. Thus, the Schwarzschild black string is unstable only against the phantom scalar perturbations which satisfy the wavelength λ>2π/μ\lambda>2\pi/\mu. These information can help us know more about the wave dynamics of phantom scalar perturbation and the properties of black string.Comment: 11 pages, 5 figures. Accepted by JHEP for publicatio

    Scalar field exact solutions for non-flat FLRW cosmology: A technique from non-linear Schr\"odinger-type formulation

    Full text link
    We report a method of solving for canonical scalar field exact solution in a non-flat FLRW universe with barotropic fluid using non-linear Schr\"{o}dinger (NLS)-type formulation in comparison to the method in the standard Friedmann framework. We consider phantom and non-phantom scalar field cases with exponential and power-law accelerating expansion. Analysis on effective equation of state to both cases of expansion is also performed. We speculate and comment on some advantage and disadvantage of using the NLS formulation in solving for the exact solution.Comment: 12 pages, GERG format, Reference added. accepted by Gen. Relativ. and Gra

    Solution generating in scalar-tensor theories with a massless scalar field and stiff perfect fluid as a source

    Get PDF
    We present a method for generating solutions in some scalar-tensor theories with a minimally coupled massless scalar field or irrotational stiff perfect fluid as a source. The method is based on the group of symmetries of the dilaton-matter sector in the Einstein frame. In the case of Barker's theory the dilaton-matter sector possesses SU(2) group of symmetries. In the case of Brans-Dicke and the theory with "conformal coupling", the dilaton- matter sector has SL(2,R)SL(2,R) as a group of symmetries. We describe an explicit algorithm for generating exact scalar-tensor solutions from solutions of Einstein-minimally-coupled-scalar-field equations by employing the nonlinear action of the symmetry group of the dilaton-matter sector. In the general case, when the Einstein frame dilaton-matter sector may not possess nontrivial symmetries we also present a solution generating technique which allows us to construct exact scalar-tensor solutions starting with the solutions of Einstein-minimally-coupled-scalar-field equations. As an illustration of the general techniques, examples of explicit exact solutions are constructed. In particular, we construct inhomogeneous cosmological scalar-tensor solutions whose curvature invariants are everywhere regular in space-time. A generalization of the method for scalar-tensor-Maxwell gravity is outlined.Comment: 10 pages,Revtex; v2 extended version, new parts added and some parts rewritten, results presented more concisely, some simple examples of homogeneous solutions replaced with new regular inhomogeneous solutions, typos corrected, references and acknowledgements added, accepted for publication in Phys.Rev.

    Expanding Universe: Thermodynamical Aspects From Different Models

    Full text link
    The pivotal point of the paper is to discuss the behavior of temperature, pressure, energy density as a function of volume along with determination of caloric EoS from following two model: w(z)=w0+w1ln(1+z)w(z)=w_{0}+w_{1}\ln(1+z) & w(z)=1+(1+z)3A1+2A2(1+z)A0+2A1(1+z)+A2(1+z)2 w(z)=-1+\frac{(1+z)}{3}\frac{A_{1}+2A_{2}(1+z)}{A_{0}+2A_{1}(1+z)+A_{2}(1+z)^{2}}. The time scale of instability for this two models is discussed. In the paper we then generalize our result and arrive at general expression for energy density irrespective of the model. The thermodynamical stability for both of the model and the general case is discussed from this viewpoint. We also arrive at a condition on the limiting behavior of thermodynamic parameter to validate the third law of thermodynamics and interpret the general mathematical expression of integration constant U0U_{0} (what we get while integrating energy conservation equation) physically relating it to number of micro states. The constraint on the allowed values of the parameters of the models is discussed which ascertains stability of universe. The validity of thermodynamical laws within apparent and event horizon is discussed.Comment: 16 pages, 3 figures(Accepted for publication in "Astrophysics and Space Science"

    Galactic Halos of Fluid Dark Matter

    Get PDF
    Dwarf spiral galaxies - and in particular the prototypical DDO 154 - are known to be completely dominated by an unseen component. The putative neutralinos - so far the favored explanation for the astronomical dark matter - fail to reproduce the well measured rotation curves of those systems because these species tend to form a central cusp whose presence is not supported by observation. We have considered here a self-coupled charged scalar field as an alternative to neutralinos and investigated whether a Bose condensate of that field could account for the dark matter inside DDO 154 and more generally inside dwarf spirals. The size of the condensate turns out to be precisely determined by the scalar mass m and self-coupling lambda of the field. We find actually that for m^4 / lambda = 50 - 75 eV^4, the agreement with the measurements of the circular speed of DDO 154 is impressive whereas it lessens for larger systems. The cosmological behavior of the field is also found to be consistent - yet marginally - with the limits set by BBN on the effective number of neutrino families. We conclude that classical configurations of a scalar and self-coupled field provide a possible solution to the astronomical dark matter problem and we suggest further directions of research.Comment: 20 pages, 7 figures; one reference added, version to be published in PR
    corecore